3.5.82 \(\int \frac {\coth (e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\) [482]

Optimal. Leaf size=33 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \]

[Out]

-arctanh((a+b*sinh(f*x+e)^2)^(1/2)/a^(1/2))/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3273, 65, 214} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3273

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m
 + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\coth (e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{2 f}\\ &=\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sinh ^2(e+f x)}\right )}{b f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 33, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sinh ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[e + f*x]/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 1.00, size = 35, normalized size = 1.06

method result size
default \(\frac {\mathit {`\,int/indef0`\,}\left (\frac {1}{\sinh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}}, \sinh \left (f x +e \right )\right )}{f}\) \(35\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

`int/indef0`(1/sinh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),sinh(f*x+e))/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(f*x + e)/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (27) = 54\).
time = 0.49, size = 410, normalized size = 12.42 \begin {gather*} \left [\frac {\log \left (\frac {b \cosh \left (f x + e\right )^{4} + 4 \, b \cosh \left (f x + e\right ) \sinh \left (f x + e\right )^{3} + b \sinh \left (f x + e\right )^{4} + 2 \, {\left (4 \, a - b\right )} \cosh \left (f x + e\right )^{2} + 2 \, {\left (3 \, b \cosh \left (f x + e\right )^{2} + 4 \, a - b\right )} \sinh \left (f x + e\right )^{2} - 4 \, \sqrt {2} \sqrt {a} \sqrt {\frac {b \cosh \left (f x + e\right )^{2} + b \sinh \left (f x + e\right )^{2} + 2 \, a - b}{\cosh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2}}} {\left (\cosh \left (f x + e\right ) + \sinh \left (f x + e\right )\right )} + 4 \, {\left (b \cosh \left (f x + e\right )^{3} + {\left (4 \, a - b\right )} \cosh \left (f x + e\right )\right )} \sinh \left (f x + e\right ) + b}{\cosh \left (f x + e\right )^{4} + 4 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right )^{3} + \sinh \left (f x + e\right )^{4} + 2 \, {\left (3 \, \cosh \left (f x + e\right )^{2} - 1\right )} \sinh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right )^{2} + 4 \, {\left (\cosh \left (f x + e\right )^{3} - \cosh \left (f x + e\right )\right )} \sinh \left (f x + e\right ) + 1}\right )}{2 \, \sqrt {a} f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {b \cosh \left (f x + e\right )^{2} + b \sinh \left (f x + e\right )^{2} + 2 \, a - b}{\cosh \left (f x + e\right )^{2} - 2 \, \cosh \left (f x + e\right ) \sinh \left (f x + e\right ) + \sinh \left (f x + e\right )^{2}}}}{2 \, {\left (a \cosh \left (f x + e\right ) + a \sinh \left (f x + e\right )\right )}}\right )}{a f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log((b*cosh(f*x + e)^4 + 4*b*cosh(f*x + e)*sinh(f*x + e)^3 + b*sinh(f*x + e)^4 + 2*(4*a - b)*cosh(f*x + e
)^2 + 2*(3*b*cosh(f*x + e)^2 + 4*a - b)*sinh(f*x + e)^2 - 4*sqrt(2)*sqrt(a)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f
*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2))*(cosh(f*x + e) + sin
h(f*x + e)) + 4*(b*cosh(f*x + e)^3 + (4*a - b)*cosh(f*x + e))*sinh(f*x + e) + b)/(cosh(f*x + e)^4 + 4*cosh(f*x
 + e)*sinh(f*x + e)^3 + sinh(f*x + e)^4 + 2*(3*cosh(f*x + e)^2 - 1)*sinh(f*x + e)^2 - 2*cosh(f*x + e)^2 + 4*(c
osh(f*x + e)^3 - cosh(f*x + e))*sinh(f*x + e) + 1))/(sqrt(a)*f), sqrt(-a)*arctan(1/2*sqrt(2)*sqrt(-a)*sqrt((b*
cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e
)^2))/(a*cosh(f*x + e) + a*sinh(f*x + e)))/(a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth {\left (e + f x \right )}}{\sqrt {a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(coth(e + f*x)/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\mathrm {coth}\left (e+f\,x\right )}{\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(e + f*x)/(a + b*sinh(e + f*x)^2)^(1/2),x)

[Out]

int(coth(e + f*x)/(a + b*sinh(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________